Conventional…or Organic?

fresh green beens
  • There are 2.1 million farms in the US. representing 915,000,000 acres of land according to the USDA 2012 Census. This is a little over the size of the United States East of the Mississippi River.
  • Certified and exempt (<$5,000 in annual sales) organic farms represent approximately 3,670,560 acres of land, and 5% ($28.4 billion) of total food sales.
  • Fruits and vegetables remain the top selling organic products accounting for 43% of U.S. organic food sales, yet account for roughly 3.2% of the total fruits and vegetables sold in the U.S.

Putting Organic in Perspective

Purchasing organic has become increasingly popular, but the numbers don’t lie. Let’s first put the organic food market in perspective before you start to worry that you must be buying only organic! The organic market is responsible for 0.4% of total cropland and 5% of food sales in the U.S. And while these numbers are impressive given the rapid rate of growth of organic, that leaves approximately 912 million acres for other methods of farming.

With a population of 323 million in the U.S. alone, it is important to have a collaboration of different farming methods in order to produce our bounty of food.

A Brief History of Organic

Before 1990 the organic food industry was essentially a patchwork of states self-regulating with varying degrees of oversight. Organic farming became accepted as mainstream in 1990 with the passage of The Organic Foods Production Act. The OFPA established the National Organic Program and the National Organic Standards Board which together develop the national standards and regulatory framework for organic producers and processors. These rules and regulations keep all certified organic farmers following the same protocols for crop and livestock production. The Final Rule went into full effect by October 2002. This was a tremendous step forward for the organic industry. The rules and practices of organic farming were made clear for farmers, and the consumer could now be assured that products with the “USDA Organic Label” had met strict and consistent standards.

What is behind the USDA Organic Label?

The Organic label is regulated by the United States Department of Agriculture. The label provides insurance to the consumer that the food or other agricultural product in question has been produced without antibiotics, supplemental growth hormones, certain pesticides, petroleum or sewage-sludge-based fertilizers, bioengineering, or ionizing radiation.

Given the additional requirements that go into organic farming, and the laws of supply and demand, organic is almost always sold at a premium. Most consumers are willing to buy higher-priced goods because of concerns about pesticide exposure in fruits and vegetables or antibiotics in their meat. However, it is important to note that the Organic Seal does not mean the product is “better for you” — it simply states that food has been grown using a specific method of agriculture.

Just like conventional farming, there are farm audits and stringent rules for growing practices. The Food Safety and Modernization Act of 2011 addresses organically and conventionally grown food and products to assure that all of the food supply remains safe.

Labeling Requirements for Organic

Products sold as organic have strict production and labeling requirements set forth by the United States Department of Agriculture. The USDA has produced a useful fact sheet, but this chart is a quick summary.

Whether your food is grown organically or conventionally, the farmer is required to follow certain mandates. However, it is not an either/or situation. Depending on different variables, such as the soil, crop, fertilizer, pesticide application, water usage, location, and most importantly, the farmer, either method of farming can be less toxic and more nutritious.

When looking at the use of the seal itself, you should take away a few things. If you choose to buy food that is certified organic, you can be assured that it follows the strict organic standards of specific pesticides, fertilizers, three years of fallow soil, and no antibiotics or hormones used in meat production.

If you prefer buying conventionally grown products you can be assured that farms are thoroughly regulated and food has been rigorously tested to be sure it is safe to eat. If you buy from your local farmer, whether they run 10 acres or 100 acres – get to know them! We cannot underestimate the value smaller farms bring to a local community. Don’t be afraid to ask questions on how they grow their food — they want to earn your trust!

Video: Today’s farmer talks about growing food and what is done to manage resources.

The Red Wine Diet

three red wine glasses clinking

Some of our D2D readers were toasting each other with glasses of red wine over the weekend cheering, “healthier than going to the gym!” Publications like ShapeBustle, and Elite Daily, are writing about the positive health effects of red wine, telling readers that it is equivalent to an hour of cardio. How?

The secret lies in resveratrol. This common compound in wine has been found to “enhance exercise training and performance.” In May 2012, the Journal of Physiology published an article by seven researchers from the University of Alberta entitled “Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats.” In laymen’s terms: these researchers discovered that a substance found in wine gave rats an extra boost during exercise. The energy boost comes from “an increase in skeletal muscle force, cardiac function, and oxidative metabolism.”

What is Resveratrol?

Resveratrol is of the “polyphenols” family and “polyphenol” is essentially all plant-based micro-nutrients. You may have first come across the benefits of polyphenol in wine in the book, The Red Wine Diet, published in September 2007. Author Dr. Roger Corder examined the role of “procyanidins”, another nutrient of the polyphenol family that is found in red wine. This book asserts that procyanidin, a micronutrient with strong anti-oxidant properties, is a “key health component” for humans. According to Dr. Corder, procyanidins may keep your blood vessels healthy and “healthy blood vessels are the key to keeping your heart, brain, and every other organ in good shape. Healthy blood vessel function may also help prevent cancer.” (Corder, 2007) For these reasons, Dr. Corder believes one glass of red wine a day is a good way to live a longer, healthier life. However, some researchers believe that many of these effects can now be attributed to the alcohol content of the wine. In fact, it is the fermentation process that extracts procyanidin from the seeds and skin of the grapes used to make wine. While procyanidins are believed to protect against free radicals, it is almost impossible to say with certainty that these nutrients help you to live a longer life without conducting human trials.

According to the study, Resveratrol has been shown to increase the mitochondrial energy in cells; break down fatty acids into energy, and improve oxygen delivery to the big muscles attached to the bones. However, the giant leap from “resveratrol is an exercise enhancer” to “drinking red wine as equivalent to a trip to the gym” is entirely inaccurate. Resveratrol enhances exercise performance, it does not replace it.

We spoke to lead researcher, Dr. Jason Dyck. He clarified that many of the stories that are being published citing this research are not correct. Nowhere does this study advocate avoiding exercise. Not to mention, the amount of red wine you would need to drink in order to get a high dosage of resveratrol is anywhere from 100 to 1,000 bottles per day! Clearly, a resveratrol supplement is in order here.

Resveratrol is believed to decrease the risk of heart disease and cancer. However, the research conducted by the University of Alberta focused on the unique relationship between resveratrol and exercise. This fueled the increasingly popular (and inaccurate) headline that drinking red wine = a workout.

Their study used male Wistar rats, separated into 4 groups over a period of 12 weeks and focused on their exercise program. The individual groups were fed either a standard diet or a diet that included resveratrol. By controlling the rat’s exercise regimen and their dietary requirements, the scientists successfully tested the effectiveness of resveratrol. The study concluded that resveratrol increased the endurance capacity of their Wistar rats.

While it is very catchy to say a glass of wine is equivalent to an hour in the gym – that is not the case. Yes, both resveratrol and an hour in the gym can benefit your overall health, but they are not mutually exclusive. The incorporation of resveratrol into your diet supports the effectiveness of your time in the gym.

GMO Labeling: What’s the Point?

GMO Label on snackfood

The Dirt-to-Dinner team understands the importance of food labeling. It helps consumers understand the nutritional content, identify ingredients, and to avoid an allergic reaction!

Nutrition labels help us identify the daily percentage or specific key nutrients and unhealthy additives, like sugar. (Sugar is Sugar discusses how sugar can cause long term health issues.) But, in the case of GMO vs. non-GMO products, this is not applicable. All genetically modified produce has the same nutritional content as non-GMO food. For instance, your corn tortilla has the exact same nutritional profile regardless if it was made with GM corn or not.

Labeling GMO produce gives implies that there must be something wrong with GMOs. It is labeling initiatives like this that fuel consumers distrust of GMOs. And a lack of understanding often leads to fear, which urges consumers to select ‘made without GMOs’ foods when given a choice. But, in reality, when polled, over 60% of people are not sure what the acronym “GMO” even means!

Vermont is the first state to require labeling — will others follow?

The state of Vermont is home to the most certified organic farms per capita. Thus, it is not surprising that Vermont is the first state to require such labeling. But this arduous labeling process is not solely focused on food transparency. More than helping the consumer “know what is in their food”, Vermont’s legislation condemns GMOs. The Vermont Labeling Rule implies that the FDA has not done a thorough review of GMOs; that there is no scientific consensus on the validity of GMO research; and that they are protecting public health and food safety. But, if we simply refer to the FDA’s website, you will find the agency’s exhaustive research on genetic engineering, from plant toxicity levels to the nutritional value against its traditionally-bred counterpart.

The FDA has a very real responsibility to protect its American citizens and would not lazily let some “new food technology” slip through the cracks. But GMOs are the most highly tested food ever created without one documented negative health event. Our food is safer than ever before. Why can’t we trust the FDA, USDA, WHO, EFSA, and even the EPA, all internationally recognized organizations indicating that GMOs pose no human health or environmental risk?

Proponents of GMOs have shown crops can be grown with a higher yield per acre while still reducing pesticide, herbicide, and water use. The opposition doesn’t like the use of the pesticide, glyphosate, which is a less toxic pesticide than most. They think it poses health risks as well as reducing crop biodiversity.

For those still opposed to genetically modified foods, there are still many options. Legally, certified Organic foods cannot contain GMOs. Whole Foods has even dedicated a portion of its website on ‘How to Shop if Avoiding GMOs’. There are cost-effective ways to be a smart shopper without wasting state government resources and money to further increase GMO labeling.

Scientific Studies on GMOs

USA National Academy of Sciences (NAS)
Transgenic Plants and World Agriculture (2000) | Impact of Genetically Engineered Crops on Farm Sustainability in the United States (2010)

USA Institute of Medicine (IOM) & National Research Council (NRC) of the National Academies.
Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects (2004)

USA National Academies (IOM, NRC, NAS, NAE)
A Science-Based Look at Genetically Engineered Crops (The study will be ready in 2016)

USA American Medical Association (AMA)
Council on Science and Public Health Report (2012)

USA American Association for the Advancement of Science (AAAS)
Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods (2012)

USA American Council of Science and Health (ACSH)
Biotechnology and Food (Second Edition) (2000)

USA Society of Toxicology (SOT)
The Safety of Genetically Modified Foods Produced through Biotechnology (2003)

USA American Dietetic Association
Position of the American Dietetic Association: Agricultural and food biotechnology (2006)

USA Genetics Society of America
Assessing Benefits and Risks of Genetically Modified Organisms (2001)

USA American Society for Cell Biology (ASCB)
ASCB Statement in Support of Research on Genetically Modified Organisms (2009)

USA American Society of Plant Biology (ASPB)
Statement on Plant Genetic Engineering 

USA American Society for Microbiology (ASM)
Statement of the American Society for Microbiology on Genetically Modified Organisms (2000)

USA American Phytopathological Society (APS)
APS Statement on Biotechnology and its Application to Plant Pathology (2001)

USA Society for In Vitro Biology (SIVB)
Position Statement on Crop Engineering 

USA Crop Science Society of America
CSSA Perspective on Biotechnology (2001)

USA Council for Agricultural Science and Technology (CAST)
Crop Biotechnology and the Future of Food: A Scientific Assessment (2005)

USA Federation of Animal Sciences Societies (FASS) – representing the American Dairy Science Association (ADSA), American Society of Animal Science (ASAS) and the Poultry Science Association (PSA).
FASS Facts On Biotech Crops – Impact on Meat, Milk and Eggs (2001)

USA Food and Drug Administration (FDA)
Questions & Answers on Food from Genetically Engineered Plants