Top Food Trends to Watch in 2024

Each year, consumer market intelligence platform Mintel reports on the trends in the food and drink industry for the year ahead. These trends are not only indicative of changing tastes but also reflect the growing importance of health, technological innovation, and sustainability in the industry.

Trend #1: Processed Food Transparency

In recent years, consumers have become more health-conscious and informed about the foods they consume. Here are some of the reasons why:

Consumer Awareness

High-quality productions on various streaming platforms, like The Blue Zone and You Are What You Eat, and popular, research-backed books like “Outlive” help to conveniently and effectively educate consumers on health.

Accessible media like these compel consumers to make healthy choices that limit the potential dangers of ultra-processed foods that contain additives, preservatives, and high levels of sugar, salt, and unhealthy fats.

Ingredient Scrutiny

Consumers are scrutinizing food labels for ingredients, looking for transparency and labels with fewer items. They want to understand what’s in their food and how it’s made.

For example, if a granola bar touts “three main ingredients: almonds, peanut butter and chia seeds,” they don’t want to then see a list of 20 additives on the back of the label.

Clean Label Movement

The trend aligns with the broader “clean label” movement, where consumers have a concern about processed foods and seek products with less than four artificial or unfamiliar ingredients, mimicking what they might use in their own kitchens.

Brand Considerations

Brands can respond by providing clear and transparent information about their products’ ingredients and processing methods, emphasizing aspects that enhance nutrition, reduce contaminants, or improve sustainability. They may also reformulate products to meet evolving consumer preferences. Consider this question:

How can food manufacturers and brands effectively communicate the level of processing in their products to consumers who are increasingly concerned about this aspect?

Trend #2: Climate Concerns, but Comfort Endures

Sustainability Expectations

Consumers are increasingly concerned about the environment and expect food and drink companies to demonstrate their commitment to sustainability. This includes reducing carbon footprints, using eco-friendly packaging, and supporting ethical sourcing practices.

But Comfort Remains Priority

Despite these sustainability concerns, consumers still prioritize comfort when it comes to food and drink. In times of crisis, people turn to familiar and comforting foods for solace.

Brand Considerations

Brands must strike a balance by creating products that are eco-friendly, satisfying, affordable, and convenient. This can include a variety of plant-based foods, locally sourced foods, whole grains and legumes that require less intensive growing inputs, or foods with sustainable packaging.

Also, brands that can provide clear, verified sustainability claims on their products are likely to gain favor with consumers who are becoming more discerning about greenwashing and false eco-friendly claims. Consider this question:

How much more are consumers willing to pay for sustainable, lesser-processed food products? Or does price sensitivity continue to dominate purchasing decisions?

Trend #3: Age, Reframed

Changing Attitudes

The trend reflects changing societal attitudes toward aging. In the past, aging was often stigmatized, and certain life stages, such as menopause, were considered taboo topics.

Healthy Aging

The concept of extending the period of life spent in good health, is becoming a priority. Consumers, particularly Generation X, are embracing a new approach to healthy aging. They seek ways to extend their healthy years, focusing on wellness and quality of life.

Brand Considerations

Brands can cater to this demographic by offering products and services that support healthy aging.

They also have an opportunity to educate and support consumers as they navigate different life stages, providing information and products on nutrition, exercise, mental health, and overall well-being.

Consider this question:

What innovative approaches can brands take to promote and support healthy aging, especially among Generation X, and what role does nutrition play in this endeavor?

Trend #4: Optimized Diets

Technology Integration

Technology is playing an increasingly integral role in the food and drink industry. Artificial intelligence, in particular, is transforming the way consumers plan meals, shop for groceries, and prepare food.

AI Meal Planning

AI-driven meal planning apps can generate recipes based on dietary preferences, available ingredients, and nutritional goals. This simplifies the meal planning process for consumers.

Efficiency and Convenience

Emerging tech solutions, such as automated shopping lists and personalized alerts, are making meal preparation more efficient. Consumers are adopting these technologies to streamline their daily routines. An example here?

Retailer Engagement

Retailers are engaging consumers with real-time shopping assistance through AI-driven push notifications, helping shoppers find products and ingredients while in stores or online.

Brand Considerations

They are utilizing AI to analyze consumer feedback and data to inspire the development of new products. AI can identify trends and preferences, leading to the creation of innovative and convenient food and drink items. Consider these questions:

In the era of optimized eating, what emerging technologies and applications are poised to revolutionize meal planning, shopping, and cooking, and how can consumers leverage these tools effectively?

And what role will data-driven insights and analytics play in helping businesses stay ahead of these trends, adapt to changing consumer preferences, and make informed decisions?

Charting a Flavorful Path Forward

As we embark on this dynamic journey into the year ahead, let us savor the excitement of culinary innovation and the potential for a more conscious, convenient, and delicious dining experience.

These trends are not mere predictions; they are guideposts for a future where our plates are filled with flavors that are not only tantalizing but also aligned with our evolving values and aspirations.

Here are some of the larger, interrelated questions that keeps us at Dirt to Dinner up at night that we are eager to explore further as 2024 unfurls:

  • Are there any regulatory changes or policies on the horizon that might impact the food and drink industry in North America in 2024, especially in relation to sustainability and labeling?
  • Are there specific sectors within food and drink that are expected to experience more pronounced shifts due to these trends, and how can businesses in those sectors prepare for these changes?
  • Which brands are successfully implementing these trends into their products, and what lessons can we learn learn from them?

These questions represent critical aspects of the evolving food and drink landscape that we plan on keeping a close eye on here at Dirt to Dinner. Addressing them will be essential for industry players, policymakers, and consumers as they navigate the culinary journey in 2024 and beyond. Brands that can navigate these trends effectively are likely to connect with consumers and stay competitive in the evolving North American market.

What questions are we missing here? Send your comments and queries to: connect@dirt-to-dinner.com

Ag Scorecard Sets Stage for Lively 2024

Dirt to Dinner took a look at just a few of the major issues and events of the past year. We’re exploring not only what happened in food & ag across the globe, but also those who gained and those who suffered from these events. Ultimately, why we all should care about our ever-evolving food system.

Without further ado, here are the top food & ag issues we faced in 2023:

Global Food Scorecard

The Farm Bill, a comprehensive package of legislation governs food production, rural economic support, and supplemental nutrition, creates the blueprint for our national food system. It was slated for review in 2023, but passage was detrimentally delayed due to inter-party disagreements on multiple fronts, mostly related to spending levels. Action has been promised for the neglected Farm Bill in 2024.

Despite continuing conflict, the Ukraine war remains a critical component of our global food system and a major source of foodstuffs for the Middle East, Africa, parts of Europe and other destinations. But armed conflicts around the world continue to threaten disruptions to the global flow of commodities and food. Conflicts around the globe continue to expand, with little reason to expect a clear resolution anytime soon. Ukrainian farmers have shown a remarkable resiliency and capacity to maintain both the production and trade important to our global food system.

Drought & natural disasters in the western United States and other parts of the world compromised crop levels, often significantly. The National Oceanic and Atmospheric Administration noted a record 28 major weather events in the United States alone, causing $93 billion in damage. The year began with over 46 percent of the contiguous U.S. officially in drought. Hot, dry conditions in key global production areas cut stocks of wheat and other crops, with significant price gyrations.

A virulent strain of avian flu spreads rapidly and causes high death rates among many forms of poultry. The outbreak that began in 2022 continued into 2023, leading to losses in chicken, turkey and other poultry flocks estimated at 21.5 million birds. That’s down from almost 57 million in 2022, but more than enough to send price shock waves across grocery shelves almost everywhere. Research continues on the threat to human health posed by this virus, with the Centers for Disease Control advising us to watch for flu-like symptoms nonetheless.

Labor shortages plague all segments of our food chain. Reports of rising concern about a serious lack of willing labor recurred throughout 2023, as farmers, suppliers, food manufacturers, retailers and even food-service providers faced sometimes serious staff shortages. Part of the problem: increasing reluctance to do field work when other less-physically demanding opportunities were available, and immigration remains a political hot potato.

Regarding inflationary pressures, consumers say enough is enough. Food price increases have cooled a bit – dropping to a mere 5.8 percent, from 2022 levels around 10 percent and 2023 peak of 10.1 percent. But consumers have shown increasing cost-consciousness that pressures food manufacturers to seek cost-control improvements.

The pipeline from dirt to dinner is getting back to normal, but there’s more to be done. COVID triggered massive disruption across the global food chain, and efforts to realign the chain to reflect a return to more normal environment continued across 2023. The transportation element of the chain remains particualry vulnerable, as volatile energy prices, development of new biofuels, changes in technology continue to roil the entire food sector.

Sustainability Scorecard

The sheer scale of the problem makes it tough to achieve the kind of progress we would like to see with food waste reduction. Efforts to reduce food waste across the entire food chain marked some notable anecdotal progress in 2023, but it remains difficult to assess the degree of progress toward ambitious targets set by various companies and governmental agencies. The big lesson from 2023: cutting the estimated 30-40 percent of food wasted across the modern food chain is an on-going effort, not a program or campaign.

Renewable energy sources like biofuels and clean energy made significant headway in 2023. Ethanol remained the Big Dog in U.S. production of biofuels, but renewable diesel and other products showed noteworthy increases in production capacity in 2023. Biofuels for aviation uses helped drive growth in the sustainable aviation fuel market to an estimated $1.1 billion in 2023 – and a projected $16.8 billion by 2030.

Practical consumer considerations slow environmental aspirations demanding green packaging. Prior to COVID, the widespread focus on environmental protection embraced the idea of “green packaging” – packaging made in an environmentally responsible manner, often from renewable materials. In 2023, support for the concept remained significant – as high as 39 percent by one report. But market analysis during the year showed a significant shift in purchasing priorities, with practical matters such as price and convenience eclipsing environmental ambitions.

The continued evolution in carbon pricing still complicates the carbon market development. As debate on climate change continued to swirl in 2023, more and more articles sought to explain the importance of carbon markets as an essential tool in combatting greenhouse gas emissions. Such markets establish the price of carbon, enabling carbon producers to purchase carbon credits from those capable of reducing, capturing or avoiding carbon dioxide. Monetizing carbon is supposed to help fund efforts to improve carbon control – in industry, and on the farm. Carbon pricing remains a complex and controversial approach to environmental protection – and an unavoidable issue for continuing debate in 2024.

Nutrition Scorecard

The role of technology in personal nutrition, such as apps for diet tracking, personalized nutrition based on genetic testing, and AI in designing diet plans grew by tremendous leaps and bounds in 2023. Winners in this arena include tech companies, as well as consumers benefiting from personalized nutrition and diet planning. Companies in the health industry and consumers wary of AI for its access to personalized information miss the opportunity for developing tailored dietary approaches to individual needs.

The impact of climate change on nutrition also took the spotlight in 2023. Several studies explored how climate change affects the nutritional content of food, with rising CO2 levels potentially lowering protein, mineral, and vitamin contents in crops. Companies developing solutions to maintain or improve the nutritional quality of crops are keeping us ahead of the game, which is especially important for those populations in regions where food’s nutritional quality is most affected, leading to increased risk of nutritional deficiencies.

Complications emerged in the further development of alternative protein products as an environmentally-responsible food choice. After several years of eager anticipation and enthusiasm for alternative meats, the industry in 2023 faced up to the realities of developing and winning widespread acceptance of a new and novel food product. Some ambitious enterprises fell by the economic wayside, as recognized leaders in the field continued to work on bringing prices in line with inflation – weary consumer willingness to pay – not to mention the rising costs of capital to entrepreneurial start-ups.

Demand for organic foods helped drive noteworthy growth in global organic foods, despite the headwinds of high food price inflation. The global organic food market approached an amazing $295 billion in 2023, up by more than $35 billion in one year alone, and $68 billion from 2021. Industry officials cite growing health-consciousness around the world as the driving factor behind such growth.

Transcript: What Does it Mean to be Healthy?

This podcast is based on this post

All right, welcome back everyone. Ready for another deep dive?

Definitely always up for a good deep dive.

Awesome. So, today we’re tackling something that feels, I don’t know, super basic, but also kind of mysterious.

Oh, like why?

Health. I mean, we all want it obviously. But what does it actually mean to be healthy? It’s a big question.

It really is. And it gets even more complicated when you think about this. Uh the US spends something like $5 trillion every year on healthcare.

Crazy, right? But are we really the healthiest nation out there? I’m not so sure.

Right. You’d think with all that spending, we’d be like the gold standard of health, which is exactly why this article, uh, what is health totally caught my eye. That one too is pretty interesting.

Goes way beyond just eating your veggies and hitting the gym. You know, it even suggests there are some like unexpected ways to measure how healthy we are.

Yeah. And that’s important because even people who seem to be doing all the right things can still have health issues. So, what’s this article say? Is it like whole lifestyle thing?

That’s exactly it. It’s like health as a way of life, a mindset almost.

And get this, it uses these three kind of unusual measurements to get a more complete picture.

Oh, okay. I’m intrigued. What are they? Laid on me.

All right, get ready. V2 max, grip strength, and the sit and rise test.

Hm, interesting. Some of those ring a bell, but honestly, can those really tell us how healthy we are? Like really?

That’s what I was wondering, too. So, let’s break them down one by one. Maybe we’ll be surprised. Starting with V2 max. Any idea what that even is?

V2 max. Well, basically, it measures how much oxygen your body can use when you’re exercising. Like really pushing yourself.

So, like how efficiently your lungs and heart are working together.

Exactly. The more oxygen you can use, the better shape your heart and lungs are in. And studies have shown that a higher V2 max is actually linked to, well, living longer. The article mentioned this one study that followed over a 100,000 people. And guess what? Those with higher V2 max scores had a lower risk of dying.

Wow. Okay, now you’ve got my attention.

So, how do you even measure this V2 max thing? Do you have to like go to a lab and run on a treadmill with tubes and stuff?

Well, yeah, that is the most accurate way. You’re right. But some fitness trackers are getting pretty good at estimating it these days, too. And the really cool part, you can actually work on improving your V2 max.

Oh, for real? I’m all ears. How do you do that?

High intensity interval training or HIIT is one of the best ways. You know those workouts where you’re going all out for short bursts and then you get a little break.

Oh, yeah. I’ve heard about those. They sound intense. But what makes them so good for V2 max specifically?

Well, because they push your cardiovascular system to the max. Literally. Like boot camp for your heart and lungs. makes them stronger and more efficient. And get this, there’s research that suggests HIIT can even help your brain function, too.

Seriously, that’s wild. Okay, I am definitely intrigued by this whole V2 max thing now. All right, let’s move on to the next one. This uh grip strength measurement. This one honestly has me a little stumped. How how strong your grip is tell you anything about your overall health? It just seems so random.

I know it does seem a bit out there at first glance, right? But grip strength can actually tell you a lot about your muscle mass and strength, particularly in your upper body.

And think about it, we use our grip for so many things. Like carrying groceries, opening jars, you know, even just shaking someone’s hand.

Yeah. We totally take it for granted.

Exactly. And this is where it gets really interesting. Some studies have actually linked a decline in grip strength to an increased risk of health problems as we age.

Like what kind of problems?

Things like heart disease and even some types of cancer, believe it or not.

Whoa. Okay. Okay. I did not see that coming. I guess weaker grip strength could be a sign that someone’s maybe not as active or they’re losing muscle mass which could lead to all sorts of other issues. Right. Exactly. It really shows how different aspects of our health are all connected in ways we might not even realize. Oh, and the article even gives some like target numbers for grip strength based on your age. For example, they say a 40-year-old woman should be able to hang from a bar for like a minute and a half.

A minute and a half. I don’t even know if I could do that. All right. This deep dive is making me want to hit the gym like right now. Okay, so you’ve got one more measurement to cover, right? The sit and rise test. What is that exactly and how does that relate to health?

Okay, so it’s actually a pretty simple test. You just sit down on the floor and then stand back up. The catch is you can’t use your hands or arms to help you.

I feel like that would be easy for some people and really tough for others. What makes it so important?

Well, it’s a really good way to assess your mobility and flexibility, which are super important for, you know, staying independent and pre ending falls as we get older. And there was this study, it’s mentioned in the article, that found something pretty amazing. People who had trouble with the sit and rise test actually had lower survival rates over time.

So, being able to move around easily is actually linked to a longer life.

That really makes you think about all the time we spend like sitting at desks and looking at screens.

Does, doesn’t it? This test is kind of like a sneak peek into your overall uh what’s the word? Muscular skeletal health. It shows how well you’ll be able to get around as you get older. And speaking of aging, the article brings up this really big question. How do we age well and stay healthy for as long as possible?

That is the million dollar question, isn’t it? And I’m guessing this article suggests that these measurements can help us do just that.

You got it. It’s all about getting a more complete picture of our health beyond just like weight or blood pressure. But it also points out that health isn’t just about the physical stuff. Our mental and emotional well-being play a huge role too.

That’s true. I mean, you can be physically fit but still struggle with things like stress or anxiety. So, how does the article address that side of things?

Well, it really emphasizes, you know, having a positive mindset, managing stress,

and having those good social connections. It even suggests those things can help boost your immune system, you know, protect you from chronic diseases and all that.

Wow. Really? So, it’s not just what you eat and how much you exercise. It’s about how you think and how you connect with other people too.

Exactly. It’s all connected, right? Physical, mental, emotional. You can’t really separate them.

It’s like a holistic view of health, taking care of the whole person.

Exactly. And that kind of brings us back to those three measurements we were talking about. They’re a good way to like check in with your physical health and maybe see where you can improve, you know.

Okay. I like that. So, let’s get practical for a minute. If someone wants to, you know, boost their scores on those measurements, where should they start?

Well, with V2 max, remember that’s all about how well your body uses oxygen during exercise. And like we said earlier, high intensity interval training, that HIIT stuff can be a real gamechanger.

But for someone who’s never done HIIT before, it seem a little daunting. Any tips for easing into it?

Absolutely. You don’t have to go all out right away. Start with like a shorter workout, maybe 10 or 15 minutes, and slowly increase the intensity and how long you do it as you get more fit. And you can always modify the exercises too.

Like instead of sprinting, maybe you do a fast walk or a light jog.

Right. Right. So, it’s all about finding that starting point that’s challenging but not like impossible and then just pushing yourself a little further each time.

Exactly. And listen to your body. Don’t be afraid to take rest days when you need them.

Good advice. Now, what about grip strength? How can we, you know, pump up those numbers?

There are a few easy exercises that can really make a difference like the dead hang. You just find a bar or something you can grip comfortably and hang there as long as you can. Oh,

Okay. Sounds simple enough.

It is, but trust me, it’s a great workout for your forearms and grip.

How long should someone aim to hang for?

Start with what you can do. Maybe like 10 or 15 seconds and then gradually increase the time. And you can also try different grips like overhand, underhand. Just mix it up a little.

Yeah, variety is the spice of life even when you’re hanging from a bar. Any other exercises?

Farmers carries are another Another great one, farmer’s carries.

What’s that?

It’s just like it sounds. Pick up a weight in each hand and walk with it. You can use dumbbells, kettle bells, even heavy grocery bags if you want. And it works your grip, but also your core, shoulders, back, even helps with your posture.

I’m definitely adding farmers carries to my workout routine. All right, last but not least, the sit and rise test. That one seems like it’s all about flexibility and mobility, right? Any tips for improving in those areas.

Yoga and Pilates are both great for that. Lots of movements that challenge your balance and flexibility and all that.

Yeah, I’ve tried yoga before and I always feel so much better afterward, but it can be intimidating for beginners. What would you say to someone who wants to try it but doesn’t know where to start?

Oh, there are so many beginner friendly classes these days. You can even find videos online that are specifically for the sit and rise test.

And you don’t have to be a yoga master to benefit either. Just taking a few minutes each day to stretch can make a huge difference.

So, it’s all about finding what works for you and making it a regular part of your routine.

Exactly. And that actually brings up a really important point from all of this. You don’t have to make these big crazy changes to live a healthier life, right?

It’s about those small sustainable changes. You know, the little things you can actually stick with and building those habits over time.

Yeah, that’s really encouraging. So, we’ve covered the physical side of things pretty well, but the article also talked about mental and emotional well being. any practical tips for you know taking care of those aspects of health?

One of the simplest things but also one of the most powerful is mindfulness like meditation, deep breathing, even just taking a few minutes to appreciate the little things that can help reduce stress so much and it’s good for your overall well-being.

Oh yeah. Just slowing down and being present in the moment.

Exactly. And another big thing for mental and emotional health is nurturing your social connections, spending time with people you care about. Having meaningful conversations, being part of a supportive community, that can make a huge difference in how happy and resilient you are.

That makes sense, but it’s easy to let those connections slip, especially when life gets busy. Any tips for strengthening those social ties?

Just make an effort to reach out to people, even if it’s just a quick call or text. Join a club or group that interests you. Volunteer. There are tons of ways to connect with others.

Those are great ideas. So, we’ve covered a lot in this deep dive. We’ve talked about those surp rising measurements of health. We’ve discussed practical strategies for improving our physical and mental well-being and we’ve highlighted that, you know, holistic approach. What’s the main takeaway you want listeners to walk away with?

It’s about realizing that health isn’t like, you know, it’s not a finish line you cross. It’s a journey. It’s something you keep working on.

It really is. And it’s different for everyone. There’s no one right way to be healthy.

Exactly. It’s not about being perfect. It’s about finding what works for you. Making choices that make you feel feel good, you know, in every way.

Totally. It’s about pushing yourself, but also being kind to yourself along the way.

Yeah, for sure. And remembering that health is about so much more than how you look. It’s about how you feel physically, mentally, emotionally. It’s about having the energy to do the things you love.

It’s about feeling alive, right? Having that spark. And I think those three measurements, the V2 max, grip strength, sit and rise test, they can really help us see where we’re at on that journey.

Totally. They give us something concrete to track. But it’s not about obsessing over the number. numbers. It’s about using them as a guide to help us live better lives, healthier, and happier.

That makes a lot of sense. Until next time, everyone, stay curious.

Transcript: Digging into Biofuels


Transcript from January 11, 2024 podcast

Lucy Stitzer:

Welcome back to Dirt to Dinner’s Digging In podcast.

This is Lucy Stitzer and today we’re digging into renewable fuels and the Biden Climate Initiative, which aims to be carbon neutral by 2050. This includes all petroleum that fuels motor vehicles. The standard is to replace the billions of gallons of fuel the United States uses each year with bio with biofuels. Currently, the US uses about 35 billion gallons of ethanol biodiesel, renewable diesel and in limited form sustainable aviation fuel.

Today’s guest is Colin Murphy who is the Deputy Director at the Policy Institute for Energy Environment and the economy at the University of California Davis. In this podcast, he explains the importance of biofuels and how we are going to get to net zero by 2050. Welcome, Colin Murphy.

Colin Murphy:

I am the Deputy Director for the Policy Institute for Energy Environment and Economy at UC Davis and I also co-lead the Low Carbon Fuel Policy Research Initiative. We’re big fans of excessively long wordy titles here at UC Davis, and really what that means, most of my job for the last several years has been to lead our research and engagement efforts around fuel policy.

The main thing we work on is the Low Carbon Fuel standard, which is a policy that was first adopted by California and British Columbia in 2010. Oregon implemented their own in 2016, Washington did theirs last year. So it’s a policy structure that has been very effective in the places that have had it at reducing the amount of petroleum that we consume for transportation. It’s seen as one of the gold-standard fuel policies out there. Certainly not the kind of thing where you’d want it to be the only policy you’re using a transportation, it needs to work with things like electric vehicle policies and policies to switch to renewable electricity and sort of a broad economy-wide portfolio.

But it’s an important part of that portfolio. And so we do research on it. We publish papers like any other academic, but we also spend a lot of our time working with regulators and other policymakers to help understand the topic and help guide them as they make decisions about how they want their jurisdiction to do this. So we have interest from a number of states all over the country who are thinking about, or at some step in the process of adopting a low carbon fuel standard as well as a number of other countries.

Canada just adopted essentially a low carbon fuel standard at the federal level in addition to the one in British Columbia. Brazil has one. It’s limited to liquid fuels only, but they have a very similar policy as well, and a number of other nations are considering it. So yeah, my life for most of the last 10 years has really been largely focused on low carbon fuel standards. But we’re also, we do work on the federal renewable fuel standard, which is a different kind of policy doing increasing amount of work in Europe where they have their own approach to decarbonizing fuels. And we’re really just trying to think about that and make sure we have policy that’s informed by the best science we can.

Lucy Stitzer:

So you’ve been a consultant for the renewable fuel standard for the national one for our country as well as Europe, and then you’re helping Canada and then a variety of different states who are trying to implement their own standards as well?

Colin Murphy:

Yeah, yeah. Not really a consultant so much. We’re an academic research group, so our mission is public benefit and to help also train people. We have grad students coming through and working with us. But yeah, we do research and policy engagement, working with policy makers to help them make good decisions at a wide variety of jurisdictions, mostly in California because it’s obviously where we are and university, it’s California, but we work with jurisdictions all over the world.

Lucy Stitzer:

Well, that’s pretty exciting.

Colin Murphy:

It certainly doesn’t give me a lot of opportunities to be bored.

Lucy Stitzer:

No, I would think not. Well, let’s just talk about the renewable fuel standard and just talk about the United States as a whole in the 2050 green energy, I guess, mandate by Biden indicated that we needed carbon-free electricity by 2035 and carbon free overall by 2050. And so I’m curious about what part biofuels will play in this, and when we think about fuel, I just want to clarify that when I think of fuel, I think we’re talking mostly about cars, trucks, airplanes, and not necessarily to go back on the grid. I think that’s a different subject, but we could certainly talk about what goes back on the grid. But just as far as most of this conversation goes is mostly about, I’ll call it motor fuel, and the UX today uses, yeah, vehicles uses about, I’m thinking, yeah, 135 billion gallons of fuel. And the renewable fuel today is about 37 billion gallons. So am I correct in thinking that there’s just a huge ramp up for the next 25 or so years and to do that?

Colin Murphy:

So there’s definitely going to need to be a huge ramp up, but for most vehicles, so most of that fuel that the US uses is used to fuel on-road vehicles, cars, trucks, buses, stuff like that. And most of it, about 50 or 60%, I’d have to go back and look at the numbers to be sure, is light duty vehicles, passenger cars, cars, trucks, SUVs, things like that.

For the light duty vehicles, battery electric vehicles are almost certainly going to be the main technology that we are using in a world where we have successfully reduced emissions. They have the best combination of low cost, high performance flexibility and everything you need to do that. Very large parts of the medium heavy duty vehicle sector, so these are commercial vehicles, trucks, vans, buses, stuff like that. Most of them can also go onto batteries as well. And in most cases, batteries, because they’re much more efficient at converting energy into motion than an internal combustion engine.

And because they don’t have as many moving parts of an internal combustion engine, their operational costs are a lot lower. So in most cases, it’s actually cheaper. Even today for some vehicle classes, it’s actually cheaper to own and operate an electric vehicle over its full lifespan than it’s internal combustion engine. And batteries are still going to keep getting cheaper over the next 10 years. So most of that 135 billion gallons of fuel is going to be replaced by electricity.

And so we definitely do not have to figure out where we’re going to get 135 billion gallons a year of liquid fuel, which is great because we don’t have the slightest clue where we get 135 billion gallons a year of liquid fuel. So even as important as EVs are, they can’t do everything by themselves. And there’s two real limitations. One is that they’re just some parts of the transportation system where batteries do not have the characteristics to really be a good fit.

The big one is aviation, especially long haul aviation, anything near going more than 500 miles, maybe a thousand miles, batteries just don’t look like they have a trajectory to get to enough energy density where they can satisfy that need. There are also a few specialized applications. Some of the very long haul freight trucks, maybe batteries are not a great fit there. Places people live in really remote areas or really mountainous areas, maybe batteries aren’t the best fit there. So there’s a few other niches of the transportation system besides aircraft that are likely to need something else, probably a liquid fuel for a long time.

Lucy Stitzer:

What about anything on the waterways, barges? They transport a lot of food.

Colin Murphy:

You’re absolutely right. That’s another one where we currently think liquid fuels are likely to be the issue. It’s possible in those hydrogen or renewable natural gas could end up being the fuel there. But for those, yes, liquid fuels may be switching to ammonia or methanol instead of the current kind of heavy oils, or you can make synthetic oils. The thing is waterways, they’re relatively small fraction of the total fuel pool. So even though we definitely have to find a solution for them, it’s not as pressing or scary a problem as is with aviation.

The other thing is with most boats, they have more space and they have looser technical requirements. So with an aircraft, because of the need to be extremely safe with an aircraft and be able to handle a wide range of temperature fluctuations because they fly up very high where it’s pretty cold, the number of potential technical solutions that work in aircraft is a lot more limited than it is in shipping. So while shipping is absolutely something that we have to think of and liquid fuels look like they’re probably going to be the solution there, it’s not, at least to me, not quite as scary or challenging a problem as aircraft.

Lucy Stitzer:

Well, definitely. I mean, your air, you’re in the air and if something goes wrong, there’s

Colin Murphy:

Pull over and wait for someone to bring you another can of gas.

Lucy Stitzer:

Yeah, exactly. And what about trains?

Colin Murphy:

Trains, again, in terms of total magnitude, they’re relatively small. For a lot of trains, you can use electricity and just have a cable overhead or running next to the track. That’s the way a lot of the rail in Europe works is they’re electric and there’s cables running along the track and they get their electricity that way. For trains, hydrogen is a potentially good idea. Hydrogen has a great energy density by mass. So energy for every kilogram of weight is pretty high, but has a lousy energy density by volume.

But with trains, you can put a car full of hydrogen going right behind the train to fuel it to go for thousands of miles, and that doesn’t really affect the train’s functioning all that much. So hydrogen’s one of the ones where I think it’s uniquely well-suited to work in rail applications, possibly maritime, but there’s a little bit more space constraint on the water. So yeah, there’s certainly options there. But again, because the technical requirements are a lot looser than they are for per aircraft, we’re not quite as certain that it has to be a liquid fuel, whereas with aircraft, it’s probably going to have to be a liquid. Right.

Lucy Stitzer:

Yes, I would agree. And then you have the weight and the balance, and as you said, the temperature fluctuation. So there’s a lot with aircraft. So you’ve run through all the different vehicles. So that would bring the 135 billion gallons of fuel that we use today. Would you anticipate that it would come down to fewer, all that? Yeah.

Colin Murphy:

So aircraft, the US consumes about 40 to I think 42, 45, somewhere in their billion gallons a year of jet fuel, excluding military applications. We don’t have great data on that for obvious reasons. With some of the aircraft, like short range lights, 500 miles, maybe a thousand miles probably could go to battery electrics or hydrogen fuel cells. So some of that 40 billion gallons probably could get switched out for or something other than liquid fuel.

But then the needs of shipping, so back of the envelope, probably 40 or 50 billion gallons a year of total demand for liquid fuels over the long run is probably what we’re looking at. And that’s still a lot, but at the very least, it’s not so far out of the realm of what we’ve produced from things other than petroleum that we can at least put together a coherent story about how we might piece together a portfolio that works.

Lucy Stitzer:

So you’re saying we could take out about a hundred or 90 billion out of the petroleum business and we can replace most of that with actually what we’re doing today, our renewable fuel usage is about 37 billion today. And you’re saying we only need about 40? So

Colin Murphy:

Yeah, now from

Lucy Stitzer:

Going to be a big ramp up,

Colin Murphy:

I mean, so of the 37 billion that we’re, yeah, of the 37 billion we’re producing, a lot of that is ethanol, which has a lower energy density. So you have to go and take a few billion gallons off that number to reflect the fact that ethanol is not as energy dense. But yeah, we’re looking at an order of assuming we can take all this fuel and push it to the sectors that need it, that don’t have any other options, doubling the amount may be tripling at most.

There’s a lot of uncertainty here with how quickly is air travel going to keep growing? It’s been the fastest growing form of transportation over the last several decades. So are we going to try to reign in the amount of growth in fuel consumption for air travel or are we going to say no air travel has value. Let’s give people this opportunity to experience the world in a really meaningful and important way.

So we’re going to find a way to make enough fuel to keep supporting, giving more people access to it. And that’s a values question as much as it’s an analytics question. But yeah, we’re looking at something where doubling, probably tripling at most, should be able to give us enough fuel to have a transportation system that provides equal or more total access to mobility than it does today. And the other thing to point out is that there are a number of options for producing liquid fuels that aren’t biofuels.

They’re still kind of in their infancy, but there’s been a lot of interest in a process called electrically derived fuels. And in these, you take electricity, you use the power to break apart carbon dioxide, which you can either capture from the air or capture from an industrial source. We’re going to need a lot of carbon capture under any climate plan that’s going to work, use electricity to break the CO2 apart into carbon monoxide. And then you combine the carbon monoxide with hydrogen, which again you make with electricity using electricity to split water apart into hydrogen and oxygen, combine those together and you can assemble them into liquid fuels using a process called Fischer–Tropsch synthesis. And this is something that’s been done for many decades. It’s not terribly efficient.

Lucy Stitzer:

You can use Fischer–Tropsch for everything. It seems like you could use it for biofuels, you can use it for biodiesel, renewable diesel. I mean, it seems like Fischer–Tropsch is the gold standard for converting any type of matter into a fuel.

Colin Murphy:

Yeah, yeah. I mean the process with biomass is you basically break the biomass down into carbon monoxide and hydrogen and then catalytic assemble those into whatever you want. So as long as you have the carbon and the hydrogen coming from somewhere, you can make a liquid fuel. And in this case, we’re using carbon out of CO2 and hydrogen from water. Previously we’d gotten them out of biomass. The thing is, it’s not terribly efficient.

So right now, if you’re trying to do a fisher to synthesis using this process, you’re losing at least half, sometimes more, like even 60% of the energy you put in to things like waste heat and making unwanted chemicals. The chemical process to synthesize this stuff is not perfectly specific. It makes a lot of different things, only some of which are the molecules you actually want. So we’re pretty confident that we can improve that efficiency somewhat.

We can get the energy losses below 50%, definitely maybe down into the 40% level. And so that at least makes it a lot more tractable for us to be able to make several billion gallons, maybe even 10 or 20 billion gallons a year of liquid fuels out of this  Fischer–Tropsch synthesis process. Now, the problem with it is it requires a whole lot of electricity at a time when we are trying to rapidly retire the fossil fuel plants off of our grid because they are what is emitting most of the carbon from the US and from most industrialized economies.

So while we’re trying to go in and retire fossil plants and build enough renewable or other non emitting energy to replace them, if you add on this very large demand to also make a whole bunch of transportation fuel, that really increases the degree of difficulty in terms of getting the electrical grid in turned over. So eels are one of the things where they have the best argument for being a large scale supply of very low carbon fuels in the 2040s probably.

But for the next 10 years, while we’re still getting so much of our electricity off of fossil fuels, it doesn’t really make any sense to burn fossil fuels and then use it to make an EFU when you’re losing half the energy to waste or useless byproducts. So there’s sort of a technology where we need to deploy a few of these facilities at commercial scale in order to start letting the technology mature to get experience with it and to figure out how we’re going to make it more efficient, but it’s not going to be able to provide us a lot of really significant volume at the carbon tendencies. We need until probably at least 10 more like 15 years from now.

Lucy Stitzer:

So like the Fischer–Tropsch technology, we have 2.0.

Colin Murphy:

Yeah, exactly. Yeah. I mean, it has been used in many cases for many decades, but the problem has always been it hasn’t been very efficient. And part of the low efficiency is that lack of selectivity that it makes a lot of different chemicals and not always the ones that you’re looking for or ones that are particularly useful. It’s the kind of problem that humans are usually reasonably good at solving. We’re good at optimizing technological systems, but you have to go and build it to full scale and give people years of experience running these things to figure out, oh, if I tweak this thing here and add a little heat exchanger there or change the chemical composition in this other place, then I can keep incrementally improving the efficiency. So it’s this weird spot where we need to build a few of these facilities at full commercial scale to have that opportunity, but we also need to be careful not to sort of too much of it in the short term because it’s not going to have a very good carbon intensity for a number of years until the grid is much, much cleaner.

Lucy Stitzer:

Really, the biofield market is going to continue to ramp up until 2035, maybe 2040 until we get and solve some of these issues and then also Fischer–Tropsch. And so we really still need corn and soybeans for the next foreseeable future.

Colin Murphy:

So I think that’s the most likely outcome as well. So most of the volume of biofuels used in the US has been determined and driven by the federal policy, the renewable fuel standard, certainly all the corn ethanol, the amount of corn ethanol that the US makes is essentially the amount of corn ethanol that the RFS incentivizes. They don’t go much beyond that level. And the same thing has largely happened with the soybean based diesel substitutes that are growing pretty rapidly right now. And the industry is asking the government to keep expanding the size of the RFS to let them continue growing.

And if you look at the targets that the EPA put out earlier this year, it looks like they’re starting to say it might be time to tap the brakes and not continue this level of growth because they recognize the potential problems that you get into, particularly with land competition as you get to two larger and larger amounts of biofuels.

But the issue is that for both corn and soybeans, biofuels are only part of what they make. So you have about 15 billion gallons a year right now of corn ethanol that’s being produced, and the corn that goes into an ethanol refinery, what the ethanol refinery does, it takes the starch out and makes ethanol out of the starch. But all of the protein, the fiber, most of the other nutrients, and even some of the starch doesn’t convert. Everything gets left behind and gets sold as annual feed called distiller greens.

Most of what would happen, what would’ve happened to that corn if it hadn’t been used for ethanol is it would’ve gone to the animal feed market anyway. So you lose the starch part of the ethanol and that no longer goes to feed the animals. But all of the yeast that ferment the ethanol and grow in the starch, the sort of spend yeast gets added into this diller grain. So you take this corn that would’ve gone a hundred percent annual feed, and instead you have kind of a slightly smaller volume of a higher protein version of animal feed.

All this is to say, at least in the case of corn, we make 15 billion gallons of ethanol. I think it uses about 30% of our corn crop, but it’s not like that 30% of the corn crop goes away, that 30% of the corn crop is still going into annual feed and not having a terribly large impact on the net acreage not a zero impact. It absolutely does have zero impact, and it does cause some land exchange, but it’s not like that 30% is gone and completely out of the food system just comes into the food system in a different way.

Lucy Stitzer:

So I think if you could just explain the four different types just so people can understand what we’re talking about a little bit.

Colin Murphy:

So like you said, ethanol’s kind of the simple one. The way we predominantly make it now is we pull starch out of something in the US it’s pretty much all corn in Brazil or other countries that have a sugar cane industry. The sugar cane is another great way to make ethanol. And then you ferment, you break starch down into sugars, and then you ferment the sugars into alcohols. Essentially the same process you make used for making beer, wine, or spirits just done on an industrial scale. And it wouldn’t taste very good if you tried to drink it directly. And ethanol is currently in the US blended into all gasoline at about a 10% level. That’s what we’ve been doing since the mid two thousands. The having some ethanol gasoline helps the gasoline burn cleaner. You need about six or 7% to really get that clean burning, the oxygen effect.

Beyond that, you’re just trying to reduce the amount of petroleum you use and replace with something that’s lower carbon than petroleum. And there has been a lot of controversy over corn ethanol, whether it is actually lower carbon. There was a very famous study that came out last year, guy named Tyler Lark was the lead author on it, and he made the argument that the RFS was actually ultimately worse, made the corn ethanol worse than petroleum. So I don’t think his methods were quite right. Part of it. The problem with biofuels is a lot of the impact and a lot of greenhouse stuff comes from what we call indirect land use change. And this is where because you have fuel producers now starting to consume agricultural products that historically has only gone into feeding people or animals or a really small number of other industrial uses.

Now the demand for these industrial, these agricultural commodities goes up and somewhere someone in the world is going to have to make more of the stuff to replace what went into fuels. And some of that replacement comes from plowing more land and bringing more land into cultivation. And there’s a big carbon impact from plowing more land. So the LARC paper said because of I luck, the renewable fuel standard and the corn ethanol was worse than the petroleum, there has been a lot of back and forth, there’s several back and forth in terms of open comment letters published by various groups of researchers on that topic. So a lot of methodological uncertainty over that. Beyond that, even if you believe the LARC paper, I think the appropriate take home message from it is maybe we shouldn’t have gone from 15 billion gallons of ethanol we did. And you can’t really unring that bell, even if you sort of stopped and said, well, any land that was cleared, we’ll return to natural form, the carbon’s lost and takes many decades to recover.

And we don’t have that sort of time. So the question I think now is what’s most useful? What’s the way to get the best use out of it? So the other thing with ethanol is there’s a process that some companies have been developed and are looking to commercialize right now where you can convert ethanol into aviation fuel. It’s not entirely unlike the Fischer–Tropsch synthesis we discussed earlier. And it’s small molecule, I’m sorry, it’s a small molecule that you can catalytic assemble into other bigger molecules like the ones that we used to fly planes on. So that might be one of the ways eventually as more EVs take over the on-road space, there’s not going to enough gasoline to blend the ethanol into, and there is some opportunity for us to increase the amount of ethanol we use. Most cars are on road, they can handle 15% ethanol without any problem.

And that would be a way to, again, push petroleum out of the system quicker, or you could turn the ethanol into jet fuel and use it to push petroleum out system that way. And that’s some of the stuff that we’re researching right now for the diesel substitutes. There’s biodiesel and renewable diesel. So biodiesel is made by a process called fatty acid methyl ester, or it’s a relatively simple low energy process to convert. Vegetable oils could be used cooking oil, could be soybean oil or any vegetable oil. You sort of heat it to a medium temperature, add some chemicals, and you can convert it to this biodiesel biodiesel. You can run it into written into most existing diesel engines up to about 20%. If you go over that, you have to start modifying the engine a bit to handle it. Plus, in cold weather, biodiesel starts to, just like most vegetable oils will start to get kind of thick and sludgy and gel up.

So most of the time, biodiesel is blended into regular diesel at a 5% or 7% level, and it’s fine. Doesn’t really cause a lot of problems that way. But because of these infrastructure issues, because of the cold weather performance and the need to only blend to a certain level, it’s not really what people are focused on right now. There’s not a lot of growth in the biodiesel space. Most producers have turned to renewable diesel. They can add some more hydrogen, and if they add a bit more hydrogen, you get a bit more of a coming out like SAF or jet fuel. So you can sort of choose whether you’re going to emphasize the production of renewable diesel or emphasize the production of SAF of renewable jet fuel. To date, most of the policies in the US have made it more beneficial for them to make renewable diesel. So that’s what they do. But with the SAF tax credit under the IRA, it’s likely we’re going to see a lot of the producers starting to tweak their process a bit to push more of their total product out through the SaaS pathways and a little bit less through the diesel pathways. Right.

Lucy Stitzer:

Well, plus the airlines have committed to a higher SAAF percentage.

Colin Murphy:

In the US it’s mostly voluntary commitments and incentives. The Saban challenge, which was the target that was put forth by the Biden administration but didn’t have a whole lot of regulatory teeth behind it, at least not yet, but there’s the SAAF tax credit that’s actually going to make a pretty big difference. Now, there’s a lot of controversy, surprisingly enough in this space controversy around the SAF tax credit and how exactly you’re going to define it. Most of that, again, comes down to this indirect land use change issue. So the way that the tax credit was set forth by Congress was if you’ll have to be at least 50% cleaner than petroleum and you get an additional bonus for every percentage point below 50, they’re able to get. So if you make it even cleaner, you get a larger and larger per gallon incentive.

Lucy Stitzer:

So you go around $1.25. The issue with that is to determine whether you get $1.25 or $1.50 or $1.75 is don’t you have to go back to the farm to determine how they’re growing the corn and determine what type of agriculture they’re using, whether they’re using cover crops or not. And that bodes a whole other series of questions of how do you verify how much carbon they’re sequestering through their growing methods.

Colin Murphy:

That is a big part of it. So we have good tools in the field of lifecycle analysis to understand how much fertilizer and how much diesel and how much electricity is used. For every ton of corn that comes off the field, it’s a lot more complex to understand how the use of a cover crop would affect soil carbon. We know with very high confidence that you can improve the amount of solid carbon retained in the soil by using things like cover crops or compost or possibly biochar or changing the types of crops or the harvest patterns or tilling the soil less. We know there’s a lot of things that can improve it, but soil is a really complex and dynamic system. So knowing that at least pushing that certain things move the needle in the correct direction is one thing, but being able to quantify it and say how many tons per acre are actually being saved?

There is another level of complexity altogether. And then on soil carbon, you also have the issue of permanence. So a farmer can make choices to use cover crops or use compost or switch to no-till agriculture and build up a lot of solid carbon in their soil. But if in five years or 10 years they decide to switch and need to start tilling the soil again, that carbon goes away. And if they received incentives to build up carbon and then in the future they till it and they lose it, all that money is kind of wasted. What they’re being paid for is permanent sequestration of carbon, and it’s not permanent at that point. Or if they sell their land to somebody else, then whoever else has it in the future, they could do the tillage and lose it. So this permanence or reversion risk is one of the things that really makes a lot of the regenerative agriculture policies, incentives so complex on top of the fact that there’s still a lot of uncertainty, and we’re still not able to effectively quantify it without doing a lot of really expensive and time consuming measurement that is probably just too expensive to really allow the farmer to receive much of an incentive, enough incentive for them to want to change their behavior.

So it’s the kind of thing we’re working on, and I think that we’ll keep getting better at it, but there’s a lot of uncertainty around soil carbon. The other big issue is that indirect land use change. The thing with indirect land use change is there’s really no way to develop a sensor that can measure it directly. Because what happens is because somebody is using more soybean oil in the US to make renewable diesel or saf, somebody else in the world might be slashing and burning rainforest in Southeast Asia to do a palm plantation, to grow palm oil, to sell to somebody on their side of the world because the lack of soybean oil coming out of the US has now changed international commodity flows. So there’s really no way for us to very precisely know how much indirect land use change every ton of soybean oil causes.

The only way you can really try to quantify it is through a model. What our models, the uncertainty is very large, and there’s a bunch of places in the model where you have to make these assumptions that are ultimately they’re subjective. There’s no objectively right or wrong way to make it. There’s only a bunch of different subjective ways. For example, when you go soybeans, you get soybean oil and soybean meal. We know how much fertilizer it took to grow the soybeans, so we know how many tons of carbon or grams of carbon were emitted in order to produce this ton of soybeans. But how much of that carbon is the responsibility of the soybean meal versus how much of it is the responsibility of the soybean oil? There’s a lot of different ways to do that. You can look at the mass, you can look at the energy content, you can look at the economic value.

None of them are objectively right or wrong, but they’ll all give you very different answers. And so that’s one of the problems with the model and with modeling eye luck, it’s the only way to assess indirect land use change, but you’re never going to get one definitively correct answer out of it. And so what’s happening with the SAF tax credit is a lot of the producers are asking the Department of Treasury, the ones that have to make the decision because a tax credit, and they’re obviously, they’re not biofuel analysts by nature at Department of Treasury, but they’re asking treasury, okay, well, let’s use this one particular model. And the US uses this model called greet to do lifecycle analysis. It is this fantastically complex model that’s been being developed for 20 years now, and it’s dozens of papers behind it. But in the current version of Greek, they include one IUC estimate based off of a different model.

And this estimate happens to be extremely friendly towards things like corn and soybeans. And so the industry’s saying, well, look, Greek’s the gold standard. This is the thing that they’ve decided to put in for their best guess. So let’s just use that and use that model with that estimate of eye look in order to determine whether we are 50% cleaner than petroleum, and if we are how much far below to figure out the per gallon range. Whereas a lot of other environmental saying, well know you don’t want to use one model. You have to use multiple models and look at the average or look at the range of options that comes out when you make these subjective decisions in different ways. That gives you a better sense of what the actual impact is not to use one of them. And if you do that, then in more justified and reasonable and certainly risk averse way than a lot of the soybean oil fuels or the corn ethanol alcohol to jet fuels wouldn’t be eligible for these credits.

I also recently gave a talk and published a blog post, which is available through our website if you go to lowcarbonfuel.uc.edu under presentations. I gave a talk over the summer talking about this and sort of why you can’t trust any one single model and why you have to go and look at the ensemble of various approaches out there. And even looking at going through the, if we know that we’re, whatever number we pick is probably not going to be right or it’s going to be too high or too low, we need to think about the risks of whether it’s better to overshoot our IUC estimate or to undershoot our ILAC estimate. And when you start thinking through all the various risk factors, it is much, much safer for us to overestimate IUC to take conservative approach and consume maybe less biofuels than would be theoretically optimal because it keeps us away from the more scary and irreversible risks than to error on the other side. So is there a

Lucy Stitzer:

Chance then that the US farmers or any farmer won’t be able to qualify then for selling their corn into the ethanol market?

Colin Murphy:

Well, no, this wouldn’t change the RFS, so this is just whether there would be the option to get an additional credit for producing jet fuel. But yeah, the existing markets aren’t going to change. They’re going to continue the trajectory set by the RFS volume.

Lucy Stitzer:

This is just for SAF, this is, so there’s a possibility then that us farmers wouldn’t be able to sell into the a f market, the ethanol market, but they could sell into the regular ethanol market.

Colin Murphy:

Yeah, that would be it. And so I think the worry is if you adopt too lax of a policy and bring too many biofuels in the system, then you could really start getting a lot of land conversion. And I don’t think there’s necessarily a problem from the food versus fuel standpoint. I mean, that would increase food prices, but probably not a huge amount. It’s more the carbon impact that if we’re going to go and expand agriculture a lot, there’s a huge carbon impact from doing that. You have to do it to feed people. Okay. Feeding people is obviously a priority. We need to do that. So if we have to have some carbon impact and expand land to keep feeding people, that’s one thing. But if we shouldn’t be doing things that have huge carbon impact in the name of, reduce the amount of carbon in the atmosphere, which is really the goal of these biofuel policies. So that’s where we’re sort of getting hung up on, and we’re waiting for treasury to make the decision and see what they ultimately do. But if they choose to take the really lax approach on I luck and let these incentives be given out to a lot of farmers, there’s a chance you could get enough total growth here that you’ll start converting a lot of land globally and the carbon benefits could be pretty bad or they wouldn’t be a benefit at that point.

Lucy Stitzer:

Right. As it pertain to the land use.

Colin Murphy:

Yeah.

Lucy Stitzer:

Portion of the conversation. So let’s circle back to the original actually purpose of this conversation is really, as we do increase renewable fuels with all the ones that we’ve talked about, is there enough land and will there be a food versus fuel debate, putting aside the land use changes and putting aside the regulations and the great standards and all of that, just is there enough land and will there be enough food?

Colin Murphy:

So absolutely there’s enough land. Like we just said before, we jumped ahead a little bit. But the worry here is that we will be producing more corn and soybeans than would be good for the climate. And again, if we have to produce it to feed people, yes, that’s the choice we make, and that’s the right choice. But yeah, so we’re not worried that there’s going to be an absolute lack of land, nor really an absolute lack of food in any way. Are there risks that biofuel policy could increase the price of food? Yes, there are to date, outside of a couple of transient spikes, often around the drought we had in the early 20 teens, we haven’t seen a really massive increase in food prices as a result of fuel policy. It is definitely there, but in a lot of cases, having alternative supplies of fuel means you are less vulnerable to price fluctuations in petroleum.

So yes, there is some increase in the inflation applied to food prices, but less inflation applied to gasoline prices. I’m not enough of an economist to have a really well-informed opinion on the whole, is it better or worse than not having a biofuel policy? But nothing I’ve seen makes us seem like it’s terribly bad. Beyond that, we know that climate change is going to be incredibly bad for a lot of things, including for the food production system because many, many parts of the world that are highly fertile right now won’t be due to higher temperatures and changing rainfall patterns. So as long as the fuels that we’re making are actually lower carbon than the petroleum, they’re displacing. And that has not always been the case. There’s absolutely been several examples where we produce large amounts of fuels that are worse than the petroleum displaced, but many of them are at least lower carbon. And as long as that’s the case, then the value of reducing greenhouse gas emissions probably does more to help secure the long-term food supply from the effects of climate change than it does to hurt it.

Lucy Stitzer:

So it’s not like we’re only growing corn and soybeans only for fuel.

Colin Murphy:

Yes, absolutely. And that’s part of the reason why it’s so hard to analyze the greenhouse gas impacts of biofuels because almost every input has that dual purpose. And so one of the other things that we’ve been seeing is because we had a biofuel policy through the RFF that really until the last five years or so was almost entirely ethanol, really, renewable diesel wasn’t a big thing until five, six years ago because of this policy. We were actually starting to see more growers in the Midwest go from rotations where they do alternate corn and soy every other year, and soy helps add nitrogen because of nitrogen fixing plants. And then also by having different species of plant, you sort of provide a bit of a break in the pathogen cycles, so you need maybe a little bit less herbicide or less additives to controlled diseases for a while.

We’re starting to see more growers going from corn soil rotation to continuous corn because you had this demand for corn biofuels. Well, now with renewable diesel coming online and demanding a lot of soybean oil because that’s the cheapest oil that you can grow really in the western hemisphere, you’re now seeing people go back to corn soy rotations, and that has some additional benefits in terms of slightly reducing the amount of nitrogen fertilizer they need, and slightly reducing the amount of herbicides and other pathogen, chemical pathogen control measures that they have to use. These are, I’m sure, likely to be much smaller than just the big impacts of are these fuels, in fact clean up the petroleum? But they do make a difference. And so the fact that we’re seeing soy growth, there’s some benefits in terms of agronomy there.

Lucy Stitzer:

Well, thank you very much. This has been fascinating and certainly provides a lot of clarity around the renewable fuels conversation.

Colin Murphy:

Yeah, certainly. Happy to help. This is a really complex topic and one that’s going to become increasingly important in the next few years. So very happy to help you and your listeners start to learn more about it. And again, there’s a lot of data and resources available at our website at low carbon fuel dot uc davis.edu.

Lucy Stitzer:

Great. Well, thank you very much.

How Beliefs Affect Our Nutrition

There is a fascinating interplay between the power of belief and its profound impact on our corporeal health and nutrition. From the intriguing ability of belief to shape our perception of food to its remarkable sway over our hormonal responses, the connections between what we think, what we eat, and how it affects our bodies are powerful.

“What is becoming more and more clear is that expectations and predictions have a very strong influence on basic experiences, on how we feel and what we perceive. Doing anything that you believe will help you feel better will probably help you feel better.

– Dr. Leonie Koban, Ph.D., Neuroscience and Affective Sciences, Lyon Neuroscience Research Center

What is the Belief Effect?

The Belief Effect occurs when patients’ expectations and beliefs play a substantial role in determining their health outcomes. It mimics the brain’s capacity to produce real physiological responses in the absence of any active treatment or intervention.

Faith and attitudes can influence the release of neurotransmitters, hormones, and immune system responses, all of which can affect the body’s functioning.

Scientific Evidence

Numerous studies have detailed the intricate relationship between belief, nutrition, and health, shedding light on how our cognitive processes can significantly impact our well-being. How else does the Belief Effect play a pivotal role in shaping our nutritional choices and health outcomes?

How Your Beliefs Shape Nutritional Health

The Ghrelin Response

In a study published in the journal Psychosomatic Medicine, researchers examined the influence of expectation on ghrelin, the hunger hormone.

Participants were given identical milkshakes, but they were told that one was a “decadent indulgence” and the other a “sensible, low-calorie choice.”

Remarkably, those who believed they were consuming the indulgent shake showed a more significant increase in ghrelin levels or an increase in the feeling of hunger or being unsatisfied with the meal, even though both shakes had the same nutritional content, those who had the “sensishake” felt less hungry, or had a lower ghrelin level.

The Flavor Perception

A study published in Appetite investigated the relationship between beliefs about food healthiness and taste perception. Participants were presented with identical food items but were led to believe that one was healthier than the other.

The results showed that individuals who believed the food was healthier rated it as more flavorful, demonstrating the influence of belief on taste perception. The person’s belief or how she/he interprets (inter-presents or internally represents) directly governs the biological response or behavior.

Another remarkable study involved a woman who suffered from split personalities. At her baseline personality, her blood glucose levels were normal. However, the moment she believed she was diabetic, her entire physiology changed to become that of a diabetic, including elevated blood glucose levels.

Diet & Nutrition

Belief in the effectiveness of a specific diet can have a profound impact on dietary adherence and outcomes. A study published in the Journal of the American Medical Association (JAMA) explored the influence of belief on weight loss.

Participants who had strong beliefs in the efficacy of a particular diet were more likely to adhere to it and achieve better weight loss results compared to those with less conviction. (This is one I personally need to subscribe to—I typically last about a week on a new dietary regimen before getting off track.)

The belief effect extends to nutrient absorption, as well. Studies have shown that believing you are consuming a nutrient-rich meal can enhance your body’s ability to absorb those nutrients. Your faith in the nutritional value of a meal can impact how efficiently your body extracts vitamins and minerals.

Metabolic Response

Our metabolic response to various foods can be influenced by our beliefs in their healthiness. A study published in the Journal of Behavioral Medicine investigated the effect of belief on post-meal metabolic markers. Participants who believed they were consuming a healthy meal exhibited more favorable metabolic responses, including improved insulin sensitivity, compared to those who believed the meal was unhealthy. Incredible what the mind can do!

There’s also a dedicated podcast on the connections between neuroscience and human behavior: The Huberman Lab podcast, hosted by neuroscientist Dr. Andrew Huberman, explores topics related to the impact of beliefs on health.

In a recent episode, Dr. Huberman emphasized the vital importance of understanding how belief affects our overall well-being. In this episode on mindset and health, Dr. Huberman explores the impact of diet, is actually a combined product of what you are doing, what you are thinking about, your stress, your anxiety—the interconnectedness of your mental and physical self.

Belief Effect Extends Far beyond Nutrition

Let’s briefly examine just some of the ways the Belief Effect impacts overall health.

Pain Management: Studies have shown that individuals who believe they are taking a potent pain reliever but are actually ingesting a placebo often experience reduced pain perception. This demonstrates the brain’s ability to release endorphins and modulate pain signals based on belief alone.

Mental Health: Faith in the effectiveness of psychotherapy or medication can significantly improve mental health outcomes. Positive expectations can lead to reduced symptoms of depression and anxiety.

Immune Function: Belief can influence immune responses, affecting the body’s ability to fight off infections and diseases. Optimistic beliefs and positive attitudes have been linked to improved immune function.

Cardiovascular Health: Belief in the benefits of lifestyle changes, such as exercise and dietary improvements, can lead to better cardiovascular outcomes, including lowered blood pressure and cholesterol levels.

These studies provide robust evidence supporting the notion that belief can significantly influence nutrition and health outcomes. Recognizing the power of belief in shaping our dietary choices and metabolic responses underscores the importance of a holistic approach to health that includes both physical and psychological factors.