The Dirt
5G is being hailed as the new frontier in technology, advancing all global industries and markets. And for agriculture, 5G would result in a smarter, more efficient, and more transparent supply chain. What are some of the technologies that will benefit? And will the broadband infrastructure in rural farmland areas be ready for the leap?
Cropduster airplanes are a familiar sight in the skies over farms worldwide — spreading fertilizers, surveying crops, and keeping an eye on cattle herds. But, as drones and other unmanned aerial systems have grown in popularity, innovative companies have begun finding new uses for these “eyes in the sky.”
One example is SlantRange, a company based in San Diego that is working to improve agricultural efficiency and productivity by flying drones over farms and using remote sensing and analytics to provide on-demand crop performance data and real-time insights. Agriculture producers are using its platform to better target their precision ag efforts, doing everything from measuring stress conditions across fields, determining plant sizes, surveying infestations, and more.
It’s a powerful tool, but it’s facing one significant challenge: connectivity.
“At a bare minimum, we’re using imagery that can distinguish individual leaves in the field,” explains SlantRange CEO and co-founder Michael Ritter. “To do that, we’re talking about a resolution on the order of a centimeter or smaller, and that translates into several gigabytes of raw data per acre.”
Many farms, especially those in remote agricultural regions with poor internet service, just aren’t yet ready to handle this type of network load. To date, SlantRange has used mobile computing solutions – effectively setting up a local network in a truck and parking it near the field while its drone works to support the connection – but there is a better solution on the horizon that could throw open the doors to advanced new applications for agriculture: 5G.
With this next-generation technology, the company hopes to make “digital farming” a reality, implementing state-of-the-art cost and time-saving solutions, like:
- Cameras capable of up to 5x the resolution of today’s hardware
- Sensors that gather spectral band information to isolate key markers of plant health
- Imagery that adapts to sunlight and weather conditions to ensure accurate prescription management and forecasting
All these benefits will make farming much more efficient. Less chemical applications, better crop knowledge, more efficient water usage, better crop breeding information.
What is 5G?
There has been a lot of talk around 5G in the news lately, but little discussion of the actual definition. Right now, your voice, the photos you share, and all data that leaves your computer travels through the atmosphere. It is all in one piece when it leaves your phone and computer – but then travels in a disarray of atoms through the air. It must come together in a readable or listable form at the receiving end.
The best way to explain this technology is to think of Legos. Legos, you say? Yes. Visualize 4G as a simple Lego airplane. It leaves intact, the parts fly through the air separately, and then must be put together right before it lands. Now take a table-sized Lego spaceship. 5G will allow this complex structure to leave, disassemble, fly through the air, and come together much faster than the airplane. The real value of 5G is that massive amounts of data will be transmitted through the air and at faster speeds.
At the most basic level, 5G is the fifth-generation mobile network that debuted in 2019, replacing the 4G networks that provide data connectivity to most current smartphones and mobile devices. Its big selling point is capacity and speed. 5G will extend high-speed mobile service into new areas, effectively bringing full, uninterrupted internet experiences to every customer – regardless of the rural destination. Farmers will be able to have instant access to all the crop, soil, and weather information on their fields.
Think of 5G like Wi-Fi, but instead of being tethered to your home or office, it’s available everywhere – all the time.
5G is expected to positively affect all industries, but may have a greater impact on the food industry, in particular. Logistics can finally go digital, supply chain tracking can be fully realized, energy companies will have better insights into the grid, and much more.
5G on the farm
5G will be especially groundbreaking on the farm. “5G technology will allow farmers to cultivate their crops in a more ecologically responsible manner,” says Ryan Douglas, a cultivation consultant who works with cannabis companies. Access to this type of connectivity will greatly improve producers’ ability to track inventory, which is of particular concern for cannabis companies that need to keep up with regulatory tracking demands.”
But regulatory tracking is just the beginning. Douglas continues, “Drones equipped with 5G technology can be used to monitor large outdoor crops for nutrient deficiencies, pest infestations, and disease outbreaks. Problem areas can then be spot-treated, instead of applying fertilizer or pesticides to the entire crop.”
It will also enable 24/7 drone monitoring of fields, allowing farmers to pinpoint the exact moment to harvest based on supply chain needs and adjust fertilizer and irrigation needs on a plant-by-plant basis to maximize yields. Real-time soil analysis can help producers decide where and when to plant to ensure the best possible crop for their current and expected conditions, while autonomous tractors can manage the harvest themselves, circling the fields while the farmer sleeps based on data being gathered and analyzed by remote sensors.
Implementation in the Field
While the agriculture industry has been slow to adopt other new technologies, 5G is coming along at a good time, after many farmers have adopted farm management software, 4G sensors, and other new tools. They’ve seen the power of these platforms; the expanded bandwidth of 5G will only make them better.
Dr. Kuang-Ching Wang, a professor of engineering at Clemson University who was involved in the development of the first-generation Internet, explains, “we have been working closely with agriculture to push a vision of the future of food production, all the way from building smart farms, to connecting them through these new networking technologies, to all the other systems technologies that will be built on top of these network capabilities. Our goal is to make agricultural production much more efficient and also to integrate artificial intelligence into this whole picture.”
5G can bring a lot of promising applications to life, he says, by focusing on data-enabled systems to help make agriculture more efficient. For example, when developing smart farms, it’s one thing to invest in farm robotics and the Internet of Things (IoT). But, how do you deploy massive numbers of sensors into your environment and then consume the data that they collect right there? Not in an office somewhere, but right in the field. You need a powerful remote connection to make that happen.
It’s the same with automated agriculture. The technology exists to gather sensor data and manage automated harvesting systems, but it will take 5G coverage to get those robots all talking to each other and the farmer.
A number of startups are working to solve this problem, and legacy brands like John Deere are on board, as well, partnering last year with Verizon to expand the 5G use cases for agriculture. This built on John Deere’s 2017 acquisition of Blue River, an artificial intelligence company that is now developing new machine learning, deep learning, and robotics tools for the company’s farm equipment.
Challenges remain
There’s a lot of promise here, but another problem exists: 5G is just part of the puzzle. To get these new ag applications off the ground, the underlying fiber optic networks will have to be extended out to rural areas, as well. In addition, all the sensors that capture the data will have to be upgraded to handle the speed and data capacity.
“It’s a whole ecosystem that has to be transformed,” says Dr. Wang. “But the promising note is that we do see these efforts happening, not just driven by the 5G industry but rather by this new global awareness of the data-driven future of agriculture.
Getting the fiber to the farms is difficult, but there are some projects underway to make it happen.”
This includes the National Science Foundations’ Broadband 2021 effort to boost broadband infrastructure, as well as the $400 million the organization committed in 2016 in support of the White House’s Advanced Wireless Research Initiative, which continues to fund new wireless technologies and applications to support widespread adoption and more robust networks for commercial use. And in December 2019, the United States Department of Agriculture made $550 million in funding available to deploy high-speed broadband internet infrastructure in rural areas across the country. Just this month, the Federal Communications Commission voted to offer $16 billion in subsidies for rural broadband buildouts this year as part of its Rural Digital Opportunities Fund.
“There is a clear consensus that, for us, the next challenge is really not about just pushing a faster network or cooler applications in the cities,” Dr. Wang says, “but rather how you bring together complete broadband capabilities, including the rural communities.”
But is 5G Safe?
Further challenges exist within the field of personal safety. Because the emerging 5G technology is essentially packed with higher levels of energy radiation than 4G, the major fear is the potentially adverse health effects on humans and animals.
The most pressing question that scientific and health organizations, like the World Health Organization, are currently exploring is finding out if the type of radiation emitted by 5G is safe non-ionizing waves, like radio waves and infrared, or harmful ionizing waves, like x-rays and gamma rays. Current studies on 5G’s radiation type are not clear cut.
Even if 5G emits non-ionizing radiation, we still have to consider how much more radiation we’ll be exposed to. The Environmental Health Trust believes that currently, “5G will require the buildout of literally hundreds of thousands of new wireless antennas in neighborhoods, cities and towns.” However, according to Dr. Steve Novella, a professor at Yale, and editor of Science Based Medicine, the amount of radiation we are talking about is a frequency less than light. “You go out in the sun, and you’re bathed in electromagnetic radiation that’s far greater than these 5G cell towers.”
The Bottom Line
5G technology has the potential to drive efficiency, and productivity at the farm level and beyond in the supply chain. The potential for promising applications is a long list, as is the amount of players getting involved. However, challenges with adoption and infrastructure, as well as the potential health risks, are still factors that are being worked out in the field.